hyperosculating parabola - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

hyperosculating parabola - tradução para russo

Cuspidal cubic; Neile's parabola; Semi-cubic parabola; Semicubic parabola; Neile parabola; Neile's Parabola
  • a}}.
  • Relation between a semicubical parabola and a ''cubic'' function (green)
  • Tangent at a semicubical parabola

hyperosculating parabola      

математика

гиперсоприкасающаяся парабола

semicubical parabola         

общая лексика

полукубическая парабола

parabola         
  • Angle trisection with a parabola
  • Parabola (magenta) and line (lower light blue) including a chord (blue). The area enclosed between them is in pink. The chord itself ends at the points where the line intersects the parabola.
  • The parabola is a member of the family of [[conic section]]s.
  • Pencil of conics with a common vertex
  • Pencil of conics with a common focus
  • Parabolic compass designed by [[Leonardo da Vinci]]
  • Parabola: general position
  • Parabola as an affine image of the unit parabola
  • Construction of the axis direction
  • Dual parabola and Bezier curve of degree 2 (right: curve point and division points <math>Q_0, Q_1</math> for parameter <math>t = 0.4</math>)
  • ''p''}} is the ''semi-latus rectum''
  • Perpendicular tangents intersect on the directrix
  • 4-points property of a parabola
  • Parabola: pole–polar relation
  • Midpoints of parallel chords
  • Inscribed angles of a parabola
  • When the parabola <math>\color{blue}{y = 2x^2}</math> is uniformly scaled by factor 2, the result is the parabola <math>\color{red}{y = x^2}</math>
  • Steiner generation of a parabola
  • 2-points–2-tangents property
  • 3-points–1-tangent property
  • Reflective property of a parabola
  • Parabolas <math>y = ax^2</math>
  • Perpendicular from focus to tangent
  • Parabola: pin string construction
  • Parabola and tangent
  • Simpson's rule: the graph of a function is replaced by an arc of a parabola
PLANE CURVE: SYMMETRICAL CONIC SECTION
X squared; Parabolas; Parabolic Equation; Conic section/Proofs; Derivations of Conic Sections; Parabola/Proofs; Derivation of parabolic form; Derivations of conic sections; Parabolic curve; Lambert's Theorem; Parabolae; Parabolic motion

[pə'ræbələ]

общая лексика

парабола

существительное

математика

парабола

Definição

Parabola
·noun One of a group of curves defined by the equation y = axn where n is a positive whole number or a positive fraction. For the cubical parabola n = 3; for the semicubical parabola n = /. ·see under Cubical, and Semicubical. The parabolas have infinite branches, but no rectilineal asymptotes.
II. Parabola ·noun A kind of curve; one of the conic sections formed by the intersection of the surface of a cone with a plane parallel to one of its sides. It is a curve, any point of which is equally distant from a fixed point, called the focus, and a fixed straight line, called the directrix. ·see Focus.

Wikipédia

Semicubical parabola

In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form

y 2 a 2 x 3 = 0 {\displaystyle y^{2}-a^{2}x^{3}=0}

(with a ≠ 0) in some Cartesian coordinate system.

Solving for y leads to the explicit form

y = ± a x 3 2 , {\displaystyle y=\pm ax^{\frac {3}{2}},}

which imply that every real point satisfies x ≥ 0. The exponent explains the term semicubical parabola. (A parabola can be described by the equation y = ax2.)

Solving the implicit equation for x yields a second explicit form

x = ( y a ) 2 3 . {\displaystyle x=\left({\frac {y}{a}}\right)^{\frac {2}{3}}.}

The parametric equation

x = t 2 , y = a t 3 {\displaystyle \quad x=t^{2},\quad y=at^{3}}

can also be deduced from the implicit equation by putting t = y a x . {\textstyle t={\frac {y}{ax}}.}

The semicubical parabolas have a cuspidal singularity; hence the name of cuspidal cubic.

The arc length of the curve was calculated by the English mathematician William Neile and published in 1657 (see section History).

Como se diz hyperosculating parabola em Russo? Tradução de &#39hyperosculating parabola&#39 em Russo