Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:
математика
гиперсоприкасающаяся парабола
общая лексика
полукубическая парабола
[pə'ræbələ]
общая лексика
парабола
существительное
математика
парабола
In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form
(with a ≠ 0) in some Cartesian coordinate system.
Solving for y leads to the explicit form
which imply that every real point satisfies x ≥ 0. The exponent explains the term semicubical parabola. (A parabola can be described by the equation y = ax2.)
Solving the implicit equation for x yields a second explicit form
The parametric equation
can also be deduced from the implicit equation by putting
The semicubical parabolas have a cuspidal singularity; hence the name of cuspidal cubic.
The arc length of the curve was calculated by the English mathematician William Neile and published in 1657 (see section History).